<table>
<thead>
<tr>
<th>Title</th>
<th>date</th>
<th>Total No. hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION TO MEDICAL PHYSIOLOGY: HOMEOSTASIS AND CONTROL</td>
<td>03.10.2016.</td>
<td>2 hrs</td>
</tr>
<tr>
<td>MECHANISMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr Predrag Brkić Assistant professor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOPHYSICS IN MEDICAL PHYSIOLOGY</td>
<td>03.10.2016.-14.10.2016.</td>
<td>15 hrs</td>
</tr>
<tr>
<td>TRANSPORTS THROUGH THE BIOLOGICAL MEMBRANES</td>
<td>17.10.2016.</td>
<td>2 hrs</td>
</tr>
<tr>
<td>Dr Sanja Mazić Associate Professor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THE BODY FLUIDES</td>
<td>17.10.2016.</td>
<td>2 hrs</td>
</tr>
<tr>
<td>Dr Sanja Mazić Associate Professor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYSIOLOGY OF EXCITABLE TISSUES</td>
<td>18.-25.10.2016.</td>
<td>6 hrs</td>
</tr>
<tr>
<td>Dr Aleksandra Rašić Marković Associate Professor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUSCLE PHYSIOLOGY</td>
<td>31.10.-7.11.2016.</td>
<td>6 hrs</td>
</tr>
<tr>
<td>Dr Sanja Mazić Associate Professor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENERAL PRINCIPLES OF NEURO PHYSIOLOGY</td>
<td>08.-14.11.2016.</td>
<td>4hrs</td>
</tr>
<tr>
<td>Dr Dragan Hrnčić Assistant professor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENSORY PHYSIOLOGY</td>
<td>15.-21.11.2016.</td>
<td>4 hrs</td>
</tr>
<tr>
<td>Dr Dragan Hrnčić Assistant professor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIAL SENSE PHYSIOLOGY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr Dejan Nešić Assistant professor</td>
<td>22.11..2016.</td>
<td>6 hrs</td>
</tr>
<tr>
<td>Dr Marina Delić Assistant professor</td>
<td>28.-29.11.2016.</td>
<td>2 hrs</td>
</tr>
<tr>
<td>MOTOR NEUROPHYSIOLOGY</td>
<td>05.12.2016.</td>
<td>4 hrs</td>
</tr>
<tr>
<td>Dr Aleksandra Rašić Marković Associate Professor</td>
<td>05.-06.12.2016.</td>
<td></td>
</tr>
<tr>
<td>Dr Olivera Stanojlović Full professor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTONOMIC NERVOUS SYSTEM</td>
<td>12.12.2016.</td>
<td>2 hrs</td>
</tr>
<tr>
<td>Dr Predrag Brkić Assistant professor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIGH BRAIN FUNCTION AND LIMBIC SYSTEM</td>
<td>13.-20.12. 2016.</td>
<td>6 hrs</td>
</tr>
<tr>
<td>Dr Olivera Stanojlović Full professor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEART PHYSIOLOGY</td>
<td>26.12.2016.-10.01.2017.</td>
<td>8hrs</td>
</tr>
</tbody>
</table>
SCHOOL OF MEDICINE UNIVERSITY OF BELGRADE
PROGRAMME OF SEMINARS IN MEDICAL PHYSIOLOGY
III semester 2016 – 2017. Academic year

1. Body fluids; physiological solutions (types and application) 17-18.10.2016  2 hrs
Dr Dragan Hrnčić Assistant professor
Dr Dragan Hrnčić Assistant professor

2. Excitation and contraction of skeletal and smooth muscle 7.-8.11.2016.  2 hrs
Dr Sanja Mazić Associate Professor
Dr Sanja Mazić Associate Professor

3. Nociception  2 hrs
Dr Dragan Hrnčić Assistant professor 14.11.2016.
Dr Aleksandra Rašić Marković Associate Professor 15.11.2016.

4. Neurophysiology of vision  2 hrs
Dr Predrag Brkić Assistant professor 28.11.2016.
Dr Marina Đelić Assistant professor 29.11.2016.

5. Spinal cord reflexes  2 hrs

6. Brain stem and control of posture and locomotion  2 hrs
Dr Aleksandra Rašić Marković Associate Professor 19.-20.12.2016.
Dr Aleksandra Rašić Marković Associate Professor

7. Learning and memory  2 hrs
Dr Olivera Stanojlović Full professor 27.12.2016.

8. ECG: recording and analysis  2hrs
Dr Igor Pantić Assistant professor 09.-10.01.2017.
Dr Igor Pantić Assistant professor
Exercise I (3 hours) Sar. dr Nikola Topalović 10.-11.10.2016. 11:00 h
1. Introduction to educational plan and program and evaluation of knowledge in Medical physiology
2. Working protocol for the exercises in Medical physiology
3. Experiment as a method for scientific research in medicine (selection of animals, acute and chronic experiment)

SEMINAR 2: Biophysics in Medical Physiology - Osmosis. Osmotic pressure (total and effective osmotic pressure). Reflection coefficient. Surface tension (2 hours).

Exercise II (3 hours) Sar. dr Nikola Topalović 17-18.10.2016.
1. General principles and the ways of giving injections (practicing on a model)
2. Usage of computers in virtual laboratory (interactive laboratory simulations)
3. Interactive presentation of preparation of the nervus ischiadicus of a frog (SimNerv)

Exercise III (4 hours) As.dr Marija Stojanović 24.-25.10.2016.
1. Obtaining of blood samples for laboratory analysis from the finger tip
2. Maintaining of a cell volume:
   a) bearing of erythrocytes in iso-, hypo- i hypertonic solution
   b) exploring of the osmotic fragility of the red blood cells in the hypotonic solutions
   c) investigation of the importance of osmotic reflection coefficient
3. Interactive presentation of homeostasis of the body water (A.D.A.M.)
4. Hydro-electrolytic balance: compartments, examples and calculations (Darrow-Yannet)
5. Interactive presentation of homeostasis of the body electrolytes (A.D.A.M.)

SEMINAR 3: Body fluids and physiological solutions (types and application) (2 hours)
Exercise IV (4 hours) As.dr Biljana Đurić 31.10.-01.11.2016.
1. Introduction to recording and analysis of the membrane potentials
2. Recording and analysis of an action potential (AP) of a single nerve fiber and determination of a threshold stimulus parameters (AP7)
3. Investigation of changes in the extracellular concentrations of Na⁺, K⁺ and Ca⁺ on the resting membrane potential, action potential amplitude and excitability
4. Investigation of excitability of a single nerve fiber (voltage-duration curve)
5. Demonstration of the accommodation of a nerve fiber applying threshold stimuli of slowly rising amplitudes
6. Investigation of the effects of temperature on the Nernst potential for certain ions
7. Recording and analysis of ion currents under condition of normal composition of the extracellular and intracellular fluid and at the temperature of 37°C
8. Recording and analysis of the origin of inward and outward currents using blockers of Na⁺, K⁺ and Ca⁺ channels

Exercise V (4 hours) As.dr Jovana Jakovljević Uzelac 7.-8.11.2016.
1. Anesthesia in experimental research
   a. Introduction to anesthesia in surgery (types and stages)
   b. Demonstration of anesthesia on the experimental animals (frog, mouse, rat)
   c. Interactive session on types and application of different anesthetics in rat (Rat Blood Pressure)
2. Investigation of the nerve compound action potential properties (SimNerv)
   d. Recording and analysis of the compound action potential of the nervus ischiadicus of the frog
   e. Change the polarity sign of the voltage pulse. What effect on the action potential is noted?
   f. Demonstration that the cathode is an active electrode
   g. Demonstration of the induced polarization currents
   h. Determination of the minimal and maximal stimulus intensity (demonstration of the graded response)
   i. Demonstration of absolute and relative refractory periods and calculation of its duration
   j. Calculation of the nerve conduction velocity of the action potential
3. Interactive video presentation of central nervous system (A.D.A.M.)
SEMINAR 4: Excitation and contraction of skeletal and smooth muscles (2 hours).
Exercise VI (4 hours) As.dr Marija Stojanović 14.-15.11.2016.
General principles and practicing of obtaining blood samples by venipuncture and intravenous application of drugs (individual practicing on a model)
1. Separation of blood plasma and serum
2. Interactive presentation of skeletal muscles' physiology (A.D.A.M.)
3. Interactive presentation of preparation of nerve-muscle preparation of a frog (m. gastrocnemius and n. ischiadicus) (SimMuscle)
   a. Recording of the single isotonic skeletal muscle twitch (myogram)
   b. Determination of the intensity of the threshold and maximal stimulus and demonstration of the graded response
   c. Recording of summation of two muscle twitch
   d. Recording of the sustained muscle contraction (tetanus)
   e. Demonstration of the effect of loading on amplitude of a muscle contraction
   f. Demonstration of fatigue effects on myogram
   g. Recording of the single isometric contraction of skeletal muscle
   h. Demonstration that amplitude of the muscle contraction is a function of the stimulus intensity (graded response)

SEMINAR 5: Physiology of pain (2 hours)

Exercise VII (4 hours) Sar. dr Nikola Topalović 21.-22.11.2016.
1. Analyses the sense of taste and smell
   a. a qualitative and quantitative analysis of smell
   b. a qualitative analysis of taste
   c. analyses interdependence between the sense of taste and smell
2. Recording of the single isometric contraction (myogram) (PhysioEx 4.0) and analysis of the obtained myograms
3. Recording of sustained muscle contraction and determination of the obtained developing force
4. Demonstration of a »trepper« phenomenon
5. Demonstration of the effect of muscle length on muscle tension due to application of a constant intensity stimulus (maximal stimulus) and drawing a length-tension diagram
6. Demonstration of the effect of stimulus intensity on muscle tension on the base of resting muscle length and construction of diagram
7. Demonstration of the effect of loading on the velocity of the isotonic muscle contraction and construction of the diagrams under different muscle length

SEMINAR 6: Biophysics in Medical Physiology - Light: transmission, reflection, refraction (refractive index). Types of lenses, focal point, refractive power, formation of an image, real and imaginary image, spherical and chromatic aberration (2 hours). Sound: transmission, loudness, frequency. Units and hearing range. Interference of waves (1 hour).
Exercise VIII (4 hours) As.dr Jovana Jakovljević Uzelac  28.-29.11.2016.
1. Construction of an image of object in a complex optical system
2. Determination of the near and far point of vision and visual acuity testing
3. Demonstration of the blind spot – Mariotte’s assey
4. Charting the visual field by perimetry and confrontation method
5. Testing of the color vision
6. Testing of binocular depth perception of objects
7. Examination of the conjugated eyeball movements
8. Examination of the role of contrast in a visual image interpretation (background and illumination)
9. Demonstration of afterimages and optical illusions
10. Examination of visual attention (Brain Metric)

SEMINAR 7: Neurophysiology of vision (2 hours)

1. Examination of the ocular fundi with an ophthalmoscope
2. Testing of air and bone conduction of the sound
3. Somatic sensations testing: exteroceptive (sensation of touch and thermal sensation); proprioceptive (vibration, position sense and sense of movement – kinesthesia)
4. Cortical sensations testing (graphesthesia, stereognosis, barognosis)
5. Multimedia presentation of the visual system physiology (Power Point)
6. Multimedia presentation of the auditory system physiology (Power Point)
7. Assessment of auditory threshold for the sounds of different frequencies (audiometry – Brain Metric)

1. Performing of the clinically important reflexes: corneal and conjunctival reflexes; papillary light reflex; reflex of accommodation; cutaneous reflexes and stretch reflexes
2. Testing of muscle strength and muscle tone
3. Performing of tests for evaluation of the cerebellar motor functions
4. Examination of the functional specialization of the cerebral hemispheres: dominance for hand, leg and eye
5. Performing of POSOV (“Programme for evaluation of the subjective sense of vertical position”) for evaluation of the vestibular system function
6. Reaction time testing
7. Withdrawal reflex and coordinated frog response (Pro dissector frog)

SEMINAR 8: Spinal cord reflexes (2 hours)
1. Tests for evaluation of the vestibular system function: rotatory test; Romberg test; compass walk test
2. Electroencephalography (EEG) – principles of recording and basic analysis,
3. Electromyoneurography (EMNG) – determination of nerve conduction velocity
4. Analysis of a representative sample of normal EEG record
5. Testing of attention characteristics: range of attention, split (Trail-Making test) and nonsplit (Stroop test) attention
6. Testing of immediate and short-term memory

SEMINAR 9: Control of posture and locomotion: brain stem (2 hours)

COLLOQUIUM I

1. Palpation of heart apical impulse (ictus cordis)
2. Auscultation of heart sounds
3. Determination of heart rate and the rhythmicity of heartbeats
4. Interactive presentation of rat's heart preparation (SimHeart) and apparatuses for recording by Langendorff Method
5. Recording and analysis of rat's heart muscle contractions
6. Demonstration and analysis of the effects of adrenaline, acetylcholine, and other substances on the heart rate and amplitude of the heart contraction
4. Interactive presentation of heart activity (A.D.A.M.)
5. Demonstration of Frank-Starling’s law of the heart

SEMINAR 10: Learning and memory (2 hours)

1. Observation of the function of a valves on isolated beef heart (Gad’s experiment)
2. Recording and analysis of human electrocardiogram (EKG)
3. Video presentation of EKG: assessment of basic ECG analysis
6. Interactive presentation of frog’s heart function: (PhysioEx 4.0)
   a. recording of the baseline frog heart activity (mechanogram)
   b. induction and analysis of an extrasystole
   c. assessing the effect of temperature on the frog heart activity
   d. examining the effect of vagus nerve stimulation on the frog heart activity

SEMINAR 11: EKG: recording and analysis (2 hours)
5. Signatures, makeup of exercises and seminars

The evaluation of theoretical and practical part of the course in Medical physiology during winter semester will be done in a form of test in 3rd week of December (Colloquium I)